
Customer Success Story

Creating liquid markets for illiquid NFTs
Launched in 2021, NFTX is a decentralized community-led liquidity protocol for NFTs built on Ethereum. It enables
users to deposit NFTs into vaults and receive ERC20 tokens that can be used to create liquidity pools. In numbers, the
protocol has $25 million in Total Value Locked, over 40,000 NFTs, and over 3,000 users staking in the protocol. NFTX's
mission is to become the primary issuer of NFT vault tokens, allowing anyone to trade and invest in NFT markets.

Wasting countless engineering hours on debugging
NFTX runs on a complex architecture consisting of multiple smart contracts and external contracts that interact with
other protocols. At its core, the NFTX smart contract uses an upgradable proxy controlled by community members of
the NFTX DAO. Only token holders can change the smart contract upon coming to a consensus.

In developing and maintaining this complex architecture, the NFTX engineering team had to reduce time wasted on
manual debugging and focus on improving their release velocity. Manually sifting through console logs consumed
countless hours of engineering time.

The team used console logs as the primary debugging method. This approach produced unreliable and incomplete
results, leaving the team without the valuable information needed to drive key decisions in terms of security and
reliability. As Kiwi, a Solidity developer at NFTX explains, the team resorted to “trial and error,” trying to guess the
results of code execution and relying on hunches.

“I would create a fork and then run it locally and then just go with trial and error, run it again, put a different console log
here, a console log there… And even after spending an hour or two hours trying that, I still don’t get enough information
to figure out the problem,” says Kiwi.

Another challenge the NFTX team faced was the inability to replicate on-chain issues in local environments due to
the many moving parts making up the entire system. The error messages generated by third-party tools didn’t
provide enough data to understand the issue and implement appropriate fixes. The team needed a solution that would
allow them to test different scenarios by simulating the outcome of transactions in a private environment against real
Mainnet data.

Siloed tooling and the lack of team collaboration features in other Web3 development tools also caused bottlenecks in
testing and customer support. The team needed an integrated Web3 development platform that enables seamless
team collaboration during development while addressing customer-facing issues.

Eliminating the pain of debugging in Web3
The Tenderly development platform is vital to enabling NFTX to push error-free code to production faster and reduce
engineering hours spent on debugging. Tenderly Debugger is the go-to solution for driving key security and system
reliability decisions. In addition, the NFTX team uses Debugger to verify deployments and tackle issues
post-deployment.

How NFTX Reduced Smart Contract
Debugging Time by 80% with Tenderly

80% less time spent on manual debugging
According to Kiwi from NFTX, debugging smart contracts and transactions
without Tenderly is "painful and pure torture."

Without Tenderly, getting to the bottom of a single issue could take up to three
hours. Tenderly has helped NFTX reduce this time by 80%. By speeding up
debugging, NFTX was able to accelerate its “time to solution” and push out
products and fixes faster and with more confidence.

"In some cases, it's been an 80% improvement over what we did before during
debugging. Without Tenderly, some things could have taken us two or three hours.
The fact that I can go into Tenderly to see exactly what happened makes
debugging incredibly easy," explains Kiwi.

Removing the guesswork from testing with simulations
Since NFTX interacts with numerous protocols, the engineering team has to
simulate transactions against a replica of Mainnet data. In some instances,
NFTX needed to test against bugs found on the Mainnet, which is impossible
with testnets. Tenderly Forks provide the NFTX team with a copy of the most
up-to-date Mainnet data, enabling them to simulate transactions as if they
were on the Mainnet.

"Maybe there's a bug on the Mainnet that we want to ensure is solved after an upgrade. We use Tenderly Forks to
fork the network with the existing bug, apply the upgrade, and check if the bug is still reproducible after the upgrade.
It's a nice way to understand how the fix would actually work in the Mainnet environment beforehand," says Kiwi.

Kiwi explains that “life was painful” for Web3 developers before Tenderly released Forks.

Enhanced team collaboration to improve customer satisfaction
Tenderly’s built-in team collaboration features empower NFTX to “create a better product and improve user
experience." Tenderly Debugger, Forks, and Transaction Simulator help NFTX engineers collaborate and share
results to address user-reported issues promptly.

"Any time we need to investigate why a transaction is failing that a user brings up to us, the first thing our support
team does is check it on Tenderly to investigate the failure; if it's something alarming or a normal thing," says Kiwi.

Tenderly Debugger allows the team to inspect the execution trace in great detail, leave comments on problematic
lines of code, make adjustments, and re-simulate the execution against real Mainnet data. Tenderly makes this
process streamlined and unified to eliminate the need to use different tools to perform a single action.

Powering product development in Web3
For NFTX, the Tenderly development platform is exceptionally valuable when building Web3 products. For those
working on complex projects, especially customer-facing products, Tenderly comes in handy when developers need
comprehensive information about why a transaction is failing, or an issue has occurred.

“The Tenderly development platform has extremely powerful tools that show us so much valuable information. It shows
us every single thing every step of the way. So when we encounter any kind of issue, our first step is to check it in
Tenderly,” says Kiwi.

• Countless engineering hours
wasted on manual debugging

• Inability to simulate complex
scenarios on testnets against
accurate Mainnet data

• Siloed development tooling
impeding team collaboration

• 80% less time spent on
manual debugging

• Eliminated guesswork from
testing with simulations
against real Mainnet data

• Improved customer
satisfaction resulting from
faster ticket resolution

Key Challenges Key Results

Company: NFTX
Website: nftx.io
Location: Vancouver, British
 Columbia
Industry: Decentralized
 Marketplace

Tenderly © Copyright 2022. All rights reserved. tenderly.co

Creating liquid markets for illiquid NFTs
Launched in 2021, NFTX is a decentralized community-led liquidity protocol for NFTs built on Ethereum. It enables
users to deposit NFTs into vaults and receive ERC20 tokens that can be used to create liquidity pools. In numbers, the
protocol has $25 million in Total Value Locked, over 40,000 NFTs, and over 3,000 users staking in the protocol. NFTX's
mission is to become the primary issuer of NFT vault tokens, allowing anyone to trade and invest in NFT markets.

Wasting countless engineering hours on debugging
NFTX runs on a complex architecture consisting of multiple smart contracts and external contracts that interact with
other protocols. At its core, the NFTX smart contract uses an upgradable proxy controlled by community members of
the NFTX DAO. Only token holders can change the smart contract upon coming to a consensus.

In developing and maintaining this complex architecture, the NFTX engineering team had to reduce time wasted on
manual debugging and focus on improving their release velocity. Manually sifting through console logs consumed
countless hours of engineering time.

The team used console logs as the primary debugging method. This approach produced unreliable and incomplete
results, leaving the team without the valuable information needed to drive key decisions in terms of security and
reliability. As Kiwi, a Solidity developer at NFTX explains, the team resorted to “trial and error,” trying to guess the
results of code execution and relying on hunches.

“I would create a fork and then run it locally and then just go with trial and error, run it again, put a different console log
here, a console log there… And even after spending an hour or two hours trying that, I still don’t get enough information
to figure out the problem,” says Kiwi.

Another challenge the NFTX team faced was the inability to replicate on-chain issues in local environments due to
the many moving parts making up the entire system. The error messages generated by third-party tools didn’t
provide enough data to understand the issue and implement appropriate fixes. The team needed a solution that would
allow them to test different scenarios by simulating the outcome of transactions in a private environment against real
Mainnet data.

Siloed tooling and the lack of team collaboration features in other Web3 development tools also caused bottlenecks in
testing and customer support. The team needed an integrated Web3 development platform that enables seamless
team collaboration during development while addressing customer-facing issues.

Eliminating the pain of debugging in Web3
The Tenderly development platform is vital to enabling NFTX to push error-free code to production faster and reduce
engineering hours spent on debugging. Tenderly Debugger is the go-to solution for driving key security and system
reliability decisions. In addition, the NFTX team uses Debugger to verify deployments and tackle issues
post-deployment.

80% less time spent on manual debugging
According to Kiwi from NFTX, debugging smart contracts and transactions
without Tenderly is "painful and pure torture."

Without Tenderly, getting to the bottom of a single issue could take up to three
hours. Tenderly has helped NFTX reduce this time by 80%. By speeding up
debugging, NFTX was able to accelerate its “time to solution” and push out
products and fixes faster and with more confidence.

"In some cases, it's been an 80% improvement over what we did before during
debugging. Without Tenderly, some things could have taken us two or three hours.
The fact that I can go into Tenderly to see exactly what happened makes
debugging incredibly easy," explains Kiwi.

Removing the guesswork from testing with simulations
Since NFTX interacts with numerous protocols, the engineering team has to
simulate transactions against a replica of Mainnet data. In some instances,
NFTX needed to test against bugs found on the Mainnet, which is impossible
with testnets. Tenderly Forks provide the NFTX team with a copy of the most
up-to-date Mainnet data, enabling them to simulate transactions as if they
were on the Mainnet.

"Maybe there's a bug on the Mainnet that we want to ensure is solved after an upgrade. We use Tenderly Forks to
fork the network with the existing bug, apply the upgrade, and check if the bug is still reproducible after the upgrade.
It's a nice way to understand how the fix would actually work in the Mainnet environment beforehand," says Kiwi.

Kiwi explains that “life was painful” for Web3 developers before Tenderly released Forks.

Enhanced team collaboration to improve customer satisfaction
Tenderly’s built-in team collaboration features empower NFTX to “create a better product and improve user
experience." Tenderly Debugger, Forks, and Transaction Simulator help NFTX engineers collaborate and share
results to address user-reported issues promptly.

"Any time we need to investigate why a transaction is failing that a user brings up to us, the first thing our support
team does is check it on Tenderly to investigate the failure; if it's something alarming or a normal thing," says Kiwi.

Tenderly Debugger allows the team to inspect the execution trace in great detail, leave comments on problematic
lines of code, make adjustments, and re-simulate the execution against real Mainnet data. Tenderly makes this
process streamlined and unified to eliminate the need to use different tools to perform a single action.

Powering product development in Web3
For NFTX, the Tenderly development platform is exceptionally valuable when building Web3 products. For those
working on complex projects, especially customer-facing products, Tenderly comes in handy when developers need
comprehensive information about why a transaction is failing, or an issue has occurred.

“The Tenderly development platform has extremely powerful tools that show us so much valuable information. It shows
us every single thing every step of the way. So when we encounter any kind of issue, our first step is to check it in
Tenderly,” says Kiwi.

"God bless
Tenderly for saving
my life. Tenderly
saved me hours
and hours on
debugging issues
that I just could not
wrap my head
around."

Kiwi,
Solidity developer at NFTX

